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Abstract. In the study of time evolution of the parameters in Deep
Learning systems, subject to optimization via SGD (stochastic gradient
descent), temperature, entropy and other thermodynamic notions are
commonly employed to exploit the Boltzmann formalism. We show that,
in simulations on popular databases (CIFAR10, MNIST), such simpli-
fied models appear inadequate: different regions in the parameter space
exhibit significantly different temperatures and no elementary function
expresses the temperature in terms of learning rate and batch size, as
commonly assumed. This suggests a more conceptual approach involving
contact dynamics and Lie Group Thermodynamics.

Keywords: Deep Learning · Statistical mechanics · Lie groups
machine learning

1 Introduction

In the study of artificial neural networks, thermodynamics and statistical
mechanics modeling proved to be a driving force leading to the development of
new algorithms, starting from the pioneering work by Jaynes [8], going from Hop-
field neural networks [7] to Boltzmann machines [1] and their newer restricted
and deep versions [12]. As the new successful family of Deep Learning algorithms
emerged, the language of thermodynamics and statistical mechanics is commonly
employed to draw analogies and boost intuition on the functioning of optimizers
based on SGD (Stochastic Gradient Descent), see [5,6] and refs. therein.

Our purpose is to establish a dictionary connecting neural networks notions
commonly used in such algorithms (e.g. loss, parameters, learning rate, mini-
batch, etc.) and statistical mechanics concepts (e.g. particles, masses, energy,
temperature, etc.), so that the analogies may be exploited with a deeper under-
standing and go beyond a qualitative analysis.
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Our paper is organized as follows. In Sect. 2 we establish the above mentioned
correspondence, relating thermodynamics concepts with neural networks ones.
We then validate our model in Sect. 3 through some experiments and in Sect.
4 we suggest a more conceptual approach based on the formalism of contact
dynamics and Lie Groups Thermodynamics [3,4,13].

2 Thermodynamics and Deep Learning

Let Σ = {zi |1 ≤ i ≤ N} ⊂ R
D represent a dataset of size N , i. e. |Σ| = N and

let f = 1
N

∑N

i=1 fi be the loss function, fi being the loss of the i-th datum zi.
A popular choice for f , for example, is the Kullback-Leibler divergence of the
Amari loss [2] (Softmax). We assume the training to take place through Stochas-
tic Gradient Descent (SGD) with minibatch B, |B| << N . We call x ∈ R

d the
vector consisting of the learning parameters of the model. The value of the kth

parameter is thus xk. Since parameters evolve in time during training, we write
x(t), or xk(t) to emphasize this. In practical implementations, with optimiza-
tion obtained via Gradient Descent (GD), t is a discrete variable indicating the
timestep:

x(t + 1) = x(t) − η∇f (1)

η denoting the learning rate. Equation (1) is often expressed in its continuous
version as:

dx

dt
= −η∇f (2)

Notice that, since Σ is fixed, the loss function f(t) at time t is determined by the
parameters x(t). If SGD is used for optimization, Eq. (2) could be substituted
with (see [6]):

dx

dt
= −η∇fB (3)

where the full loss function is replaced with fB = 1
|B|

∑|B|
i=1 fi and at each time

step B is chosen in Σ. Our purpose is to show that if (2) is properly interpreted
in a thermodynamics context, we can analyze effectively the dynamics of SGD,
without introducing stochastic variables as in (3) studied in [6], besides the ones
intrinsic to Boltzmann statistical mechanics and its far reaching generalizations
(see [3,4,11] and refs. therein).

We now proceed with our thermodynamic interpretation. Let x(t) represent
the position (or geometry) of a mechanical system at time t and consider the
loss f(t) as the potential energy associated with the geometry of the system.

We first look at the system as conservative, i.e., the force acting on each
particle according to (2) is the negative gradient of the potential:

Fk = −
∂f

∂xk

or F = −∇f
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The velocity at each optimization step is:

vk(t) =
xk(t) − xk(t − 1)

∆t
or v(t) =

x(t) − x(t − 1)

∆t

We assign masses mk to each particle. i.e. to each parameter xk. If the
mechanical system were ideal and isolated, it would evolve following Newton’s
law:

Fk = mk

dvk

dt

For finite time steps ∆t, the corresponding position update would be

∆xk = vk∆t +
1

2

Fk

mk

(∆t)2 (4)

In this case, the total energy would be conserved (up to numerical integration
errors) and the system would convert potential into kinetic energy and vice versa.

In the language of atomistic simulations, this is referred to as Constant

Energy dynamics, but it is not what occurs during neural network training.
In fact, typical optimization algorithms use the gradient to update coordinates,
not velocities. The equation ruling the dynamics is in fact (1): ∆x = −η∇f ∆t.
Let us rewrite (4), taking the force term as the gradient of the potential:

∆xk = vk∆t −
∆t

2mk

∂f

∂xk

∆t (5)

This is the same as ∆x = −η∇f∆t, if the velocities are set to zero before taking
each step and η = ∆t/(2mk). Notice that the higher the masses, the lower is
the learning rate, since the parameters are “harder to move”. The variations of
the learning rate can be seen equivalently as altering the time step: a smaller
learning rate means a slower simulation, that is a smaller time step. In Sect. 3
we will study the dependence of the key hyperparameters η and |B| from the
temperature, (see [6]), but this relation will be more elusive.

We define the instantaneous temperature T (t) of the system as the kinetic
energy K(t) divided by the number of degrees of freedom d and a constant kB

to obtain the desired units:

T (t) =
K(t)

kB d
=

1

kB d

d
∑

k=1

1

2
mk vk(t)2

The thermodynamics temperature is then the time average of T (t):

T =
1

τ

∫ τ

0

T (t) dt =
1

τkB d

∫ τ

0

K(t) =
K

kB d

where K is the average kinetic energy and τ is long enough to yield small fluc-
tuations in T and depends on the time scale of the individual particle motions.
In practice, to perform mechanical simulations at constant (or regularly vary-
ing) temperature, coupling with a thermal reservoir is introduced by rescaling
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the velocities every fixed number of steps to match the desired temperature.
These are called constant temperature simulations; we set the temperature equal
to zero every step (instead every few steps as usual). The mechanical equiva-
lent, is a dynamic simulation where heat is extracted from the system at each
step. Performing such an optimization with the gradient descent (GD), has a
clear mechanical interpretation: it leads to a (local) minimum in the potential
or, equivalently, a minimum of the total energy at zero temperature, when the
kinetic energy vanishes.

We now turn to examine the effect of SGD, Stochastic Gradient Descent.
With SGD, the gradient for a given geometry changes each time it is computed,
because of the random choice of the minibatch B. This amounts to a residual
velocity associated to each particle even after equilibrium is reached. Hence, our
system does not evolve according to Newton dynamics and in particular the
mechanical energy is not constant.

Once the equilibrium is reached, the macroscopic parameters (the loss and
temperature) will no longer change, i.e. they will have small fluctuations only.
In particular 〈v〉 = 0, that is, we expect the average value of velocity to vanish.
Notice that here we have a key difference between GD (gradient descent) and
SGD (stochastic gradient descent): at equilibrium

σ2 = 〈v2〉 − 〈v〉2

σ2 = 0 for GD but σ2 = 〈v2〉 for SGD. This corresponds to the physical fact
that GD reaches the equivalent of the zero Kelvin (no temperature), while with
SGD we maintain a residual finite temperature. With a constant temperature
simulation we will achieve the minimum free energy and not a minimum of the
potential energy, that is our loss function.

We now recall the principle of equipartition of energy: at thermodynamic

equilibrium, all accessible degrees of freedom have, on a sufficiently long time

average, the same kinetic energy.

Let Kav be the time average kinetic energy of particle (i.e. parameter) k. By
the principle of equipartition of energy, this is 1/d the total kinetic energy:

Kav = K/d = kBT

Hence knowing the average value of v2
k at equilibrium, i.e., the variance of the

gradient, this equation allows us to compute the temperature (if we set all masses
equal to 1).

In the next section we will perform experiments to test our thermodynamic
model and the relation between some of the notions we introduced. In Sect. 4,
we shall interpret the continuous version of the time evolution of our system as
the dynamics of a mechanical system with Hamiltonian H consisting of the sum
of a conservative term Hmech = K + V and a dissipative term.
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3 Experiments

Our experiments were performed on both the MNIST and CIFAR10 datasets
(see [9,10]) obtaining similar results. We report the experiments on the MNIST
dataset only. We are using a LeNet modified architecture in colab platform
(Fig. 1):

Fig. 1. Modified LeNet

This is an accurate, yet simple, network consisting of two convolutional lay-
ers (Conv1, Conv2) followed by two linear ones (Linear1, Linear2), with a low
number of parameters. Batchnormalization and maxpool are also used.

We use SGD to optimize the network, with a constant for the regularization
penalty λ = 4 ·10−2 and minibatch size β = 32. We start our training with learn-
ing rate η = 10−2, then decrease it to 10−3 after 300 epochs and finally to 10−4

at 600 epochs. The loss function fB during training and average temperature at
equilibrium in layers are expressed in Fig. 2 and 3.

Fig. 2. Loss function Fig. 3. Temperature in layers

Notice that different layers exhibit significantly different temperatures.
In Fig. 4 and 5 we describe the behaviour of the temperature T , as defined in

our previous section, depending on the inverse 1/β of the minibatch size and the
learning rate η. Despite in the literature ([6] and refs therein) T is commonly
believed to behave proportionally to such parameters, we discover in practice
quite a different behaviour.
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Fig. 4. Batch size and temperature

Notice first that different layers exhibit significantly different behaviour in
the dependence of η and β from the temperature, hence they should be examined
separately. In fact we see a linear behaviour of the temperature with respect to
1/β just for the Convolutional 2 and Linear 2. While we have an essential non
linearity for the others. Similar considerations hold for the quadratic behaviour
with respect to the learning rate. We now look at the temperature of the filters
of the first convolutional layer at equilibrium (see the values of parameters in
Conv 1 in Fig. 6).
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Fig. 5. Learning rate and temperature

Fig. 6. Temperature of filters in the first
convolutional layer

Clearly the parameters of differ-
ent filters have different temperature
behaviours at equilibrium: some filters
tend to stay stable while others keep
changing. A possible interpretation of
this is that some filters are more effec-
tive than others, so once learnt the sys-
tem will not forget them. Vice versa,
non effective filters in image recogni-
tion still change since they do not con-
tribute to loss reduction.
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4 Contact Hamiltonian Dynamics, Lie Groups

Thermodynamics and SGD

In this section we provide some mathematical insight to our thermodynamic
interpretation of SGD described in Sec. 2 and the experiments in Sec. 3. Since
at each step we extract heat from our system, we cannot assume that the sum
of kinetic energy and potential (the loss function) Hmech is preserved; we need
to consider a term taking into account dissipation.

We assume then (see [4], Sec. 5) that the thermodynamic space of parameters
R

d+1 is equipped with a contact structure:

α = dS − padqa

The contact hamiltonian dynamics is then ruled by the contact hamiltonian:

H = Hmech + V(S)

where Hmech = K + V as above. We could take as first approximation (see [4]),
V(S) = γS, where γ is a constant and S is the entropy of the system. This leads
to the contact Hamilton equations:











q̇a = ∂H
∂pa

ṗa = − ∂H
∂qa

− pa
∂H
∂S

Ṡ = pa
∂H
∂pa

(6)

We plan to measure in the future, with a long enough simulation the entropy
S in this context, by knowing the temperature and the area sampled by the
evolution of the system in the parameter space. This will enable the modelling
with a contact hamiltonian system and a concrete mean to test it. Also, the
entropy comes into play in other contexts, like the Koszul-Souriau approach to
thermodynamics.

We now make some considerations on Lie group thermodynamics and sug-
gest possibly future mathematically interesting directions. Consider the action
of G the Galilei group on space time. As Souriau proves, this action is hamilto-
nian, so it makes sense to speak of its moment map. We cannot however expect
generalized Gibbs states to exist for the full Galilean group, but, as specified in
[11] 7.3.3 only for one-parameter subgroups. If we are able to run our experiment
long enough, the system would explore a large portion of the parameter space, so
to test the partition function predicted by the probability function ([11] 7.1.1):

ρb =
1

P (b)
e−〈J,b〉, b ∈ Lie(G) (7)

where J denotes the moment map.
We also believe that if would be mathematically interesting to fit contact

dynamics for a thermodynamics system into the framework of Souriau Lie group
thermodynamics and measurements on this simple model could be an experimen-
tal evidence that these these two theories are effective and equivalent ways to
describe popular machine learning systems.
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5 Conclusions

We described a parallelism between SGD dynamics in Deep Learning and a
thermodynamics system. Experiments show that the temperatures of each layer
behaves independently, hence it is necessary to treat layers as independent sys-
tems. Furthermore, the temperature of each layer does not depend in a consistent
and simple way on the size of the minibatch and the learning rate: extra care
must then be exerted when defining the relation of the temperature with such
key hyperparameters. Insight from Lie group thermodynamics and its general-
ization to contact hamiltonian dynamics suggests to push this analogy further
to obtain quantitative experimental results.
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